Title: Evaluating the effects of Curcumin Nano-chitosan on miR-221 and miR-222expression and Wnt/ β -catenin pathways in MCF- 7, MDA-MB-231 and SKBR3 cell lines

Presenting author: Vida Mirzaie

Department of Anatomy, Afzalipour School of Medicine, Kerman University of MedicalSciences, Kerman, Iran.

Co-author's details:

Touba Eslaminejad, Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.

Seyed Noureddin Nematollahi-Mahani, Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.

Marzieh Lotfian Sargazi, Physiology Research Center, Institute of Neuropharmacology, KermanUniversity of Medical Sciences, Kerman, Iran.

Mehdi Ansari, Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.

Abstract:

Breast cancer is one of the most common diseases worldwide. miR-221 and miR-222 are two microRNAs with pivotal roles in many cellular processes which regulate the Wnt/β-catenin pathway. Curcumin (CUR), a yellow polyphenolic compound, targets numerous pathways relevantto cancer therapy. The main aim of this study was to compare the ability of chitosan curcumin nanoparticle (CC-CUR) with the curcumin in modulating *miR-221* and *miR-222* expression through Wnt/β-catenin pathway in MCF-7, MDA-MB-231 and SK-BR-3 breast cancer cells Chitosan-cyclodextrin-tripolyphosphate containing curcumin nanoparticles (CC-CUR) wereprepared. Experimental groups including CC-CUR, CUR and negative control were designed. The expression of *miR-221* and *miR-222* and Wnt/ β -catenin pathway genes was measured. The level of miR-221 and miR-222 and β -catenin genes decreased in MCF-7 and MDA-MB-231 cells and WIF1 gene increased in all cells in CC-CUR group. However, in SK-BR-3 cells miRs and WIF1 gene expressions were increased following CC-CUR administration and β -catenin decreased by administration of CUR. Significant decreasing of β -catenin and increasing of WIF1 gene in almostall three cell lines, indicates that this formulation exerts its effect mainly through the Wnt/β-cateninpathway. These preliminary findings may pave the way for the use of curcumin nanoparticles in the treatment of some known cancers.

Biography:

Dr. Vida Mirzaie, 34 years old, married with two daughters. 8 and 3 years old. I am an assistantprofessor of Anatomy in Kerman University of Medical Sciences, Iran. In addition to teaching anatomy, embryology and histology, I have researches in the field ofcellular and molecular, gene expression, nano delivery and I am working on cancer cell lines mostly breast cancer and glioblastoma. I am very interested in sharing and gaining new experiences and I love traveling, reading books and watching movies.

